Medical devices often include polymeric components, which contain additives or contaminants that may leach into patients and pose a health risk. Previously, we proposed a mass transport model that conservatively estimates the leaching kinetics and only requires the solute's diffusion coefficient in the polymer, , to be specified. Because determining experimentally is time‐consuming, we also parameterized empirical models to estimate worst‐case values using only the solute molecular weight, . These models were based on a modest database and were limited to 19 polymers and larger solutes ( g/mol). Here, we assemble a much larger database, which enables us to construct more accurate models using a robust statistical approach, expanding the coverage to 50 device‐relevant polymers and smaller solutes ( g/mol). Then, we demonstrate several applications of these bounds, including modeling the release kinetics. Finally, we observe an interesting phenomenon, a discontinuous drop in of up to 25,000× for solutes with g/mol in glassy polymers. Using molecular simulations and cheminformatics tools, we propose a novel definition of the effective diameter of free volume channels in polymers, and we show that solutes larger than this channel size diffuse much more slowly.