A new chelating compound has been developed for use in the immobilized metal affinity chromatographic (IMAC) separation of proteins. The bidentate ligand, alpha-amino phenylalanine tetrazole, 4, was synthesized via a five-step synthesis from N-fluorenylmethoxycarbonyl phenylalanine and then immobilized onto silica through the epoxide coupling procedure. The binding behavior of the resulting IMAC sorbent, following chelation with Zn2+ to a density of 183 micromol Zn2+ ions/g silica, was characterized by the retention of proteins in the pH range of 5.0-8.0, and by the adsorption behavior of lysozyme with frontal chromatography at pH 6.0 and 8.0. The prepared column showed the separation ability to four test proteins and the retention time of these proteins increased with an increase in pH. From the derived isotherms, the adsorption capacity, qm, for the binding of lysozyme to immobilized Zn2+-alpha-amino phenylalanine tetrazole-silica was found to be 1.21 micromol/g at pH 6.0 and 1.20 micromol/g sorbent at pH 8.0, respectively, whilst the dissociation constants KD at these pH values were 5.22x10(-6) and 3.49x10(-6) M, respectively, indicating that the lysozyme was retained more stable under alkaline conditions, although the binding capacity in terms of micromole protein per gram sorbent remained essentially unchanged.