Abstract:Cancer survivors are highly motivated to seek information about the use of dietary supplements and complementary nutritional therapies to improve their quality of life. Fucoidan, a sulfated polysaccharide extracted from brown marine alga, exhibits a wide range of bioactivities, including anticancer activity. As natural killer (NK) cells serve an important role in defenses against tumor cells, the present study examined the effects of fucoidan extracted from Cladosiphon Okamuranus on NK cell activity in cancer … Show more
“…Sulfated fucans, also known as fucoidans, are sulfated polysaccharides mainly composed of L-fucose and sulfate groups usually extracted from brown algae and echinoderms. Because of their various biological and biomedical characteristics such as being anticoagulant (Colliec et al, 1991;Cumashi et al, 2007), antithrombotic (Min et al, 2012), anti-inflammatory (Cumashi et al, 2007), anticancer (Nagamine et al, 2020), and immunomodulatory (Amin et al, 2020), research interest in sulfated fucans have increased. Additionally, they had been utilized for dermal burn healing (Sezer et al, 2007), wound healing (Murakami et al, 2010) and bone tissue regeneration (Jin and Kim, 2011) due to their excellent biocompatibility.…”
Sulfated fucans are important marine polysaccharides widely distributed in brown algae and echinoderms, which gained increasing research interest for their various biological and biomedical activities. Fucanases could serve as tools in the bioconversion and structural investigation of sulfated fucans. A few gene-defined endo-1,4-fucanases have been characterized, while the sequence of endo-1,3-fucanase remain unstudied. Here, an endo-1,3-fucanase gene funA was screened from the genome of marine bacterium Wenyingzhuangia fucanilytica CZ1127 T using transcriptomics. None of the previously reported glycoside hydrolase domains were predicted in the enzyme FunA, which hydrolyzed sulfated fucans in a random endo-acting manner. Ultrahigh performance size exclusion chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that FunA specifically cleaves α-1,3 glycosidic linkage between 2-O-sulfated and non-sulfated fucose residues. FunA exhibited transglycosylating activity with glycerin, methanol, and L-fucose as acceptors. D206 and E264 were critical for the functioning of FunA as identified by the site-directed mutagenesis. Another five homologs of FunA were confirmed to possess endo-1,3-fucanase activities. This is the first report on the sequence of endo-1,3-fucanase. The novelty of FunA and its homologs in sequences and activity shed light on a novel glycoside hydrolase family, GH168.
“…Sulfated fucans, also known as fucoidans, are sulfated polysaccharides mainly composed of L-fucose and sulfate groups usually extracted from brown algae and echinoderms. Because of their various biological and biomedical characteristics such as being anticoagulant (Colliec et al, 1991;Cumashi et al, 2007), antithrombotic (Min et al, 2012), anti-inflammatory (Cumashi et al, 2007), anticancer (Nagamine et al, 2020), and immunomodulatory (Amin et al, 2020), research interest in sulfated fucans have increased. Additionally, they had been utilized for dermal burn healing (Sezer et al, 2007), wound healing (Murakami et al, 2010) and bone tissue regeneration (Jin and Kim, 2011) due to their excellent biocompatibility.…”
Sulfated fucans are important marine polysaccharides widely distributed in brown algae and echinoderms, which gained increasing research interest for their various biological and biomedical activities. Fucanases could serve as tools in the bioconversion and structural investigation of sulfated fucans. A few gene-defined endo-1,4-fucanases have been characterized, while the sequence of endo-1,3-fucanase remain unstudied. Here, an endo-1,3-fucanase gene funA was screened from the genome of marine bacterium Wenyingzhuangia fucanilytica CZ1127 T using transcriptomics. None of the previously reported glycoside hydrolase domains were predicted in the enzyme FunA, which hydrolyzed sulfated fucans in a random endo-acting manner. Ultrahigh performance size exclusion chromatography-mass spectrometry and nuclear magnetic resonance analyses revealed that FunA specifically cleaves α-1,3 glycosidic linkage between 2-O-sulfated and non-sulfated fucose residues. FunA exhibited transglycosylating activity with glycerin, methanol, and L-fucose as acceptors. D206 and E264 were critical for the functioning of FunA as identified by the site-directed mutagenesis. Another five homologs of FunA were confirmed to possess endo-1,3-fucanase activities. This is the first report on the sequence of endo-1,3-fucanase. The novelty of FunA and its homologs in sequences and activity shed light on a novel glycoside hydrolase family, GH168.
“…Similar to what has been shown for fucoidan derived from other origins, OM fucoidan has been reported to exert antitumor and antiviral effects. In a murine model, antitumor activity has been attributed to the fucoidan-mediated stimulation of macrophages and natural killer cells ( 8 , 9 ), while antiviral activities seem to be more complex and may involve both host–virus and virus–fucoidan interactions. Previous studies have reported antiviral activities of OM fucoidan against human T-cell leukemia virus type 1 (HTLV-1) ( 10 , 11 ), dengue virus type 2 ( 12 ), hepatitis C ( 13 ), Newcastle disease virus (DSV) in poultry ( 14 , 15 ), and canine distemper virus (CDV) ( 16 ).…”
Fucoidan represents fucose-rich sulfated polysaccharides derived from brown seaweeds, which exerts various biological activities applicable for functional foods and therapeutic agents. The objective of the present study was to investigate in vivo effects of fucoidan extracted from Okinawa mozuku (Cladosiphon okamuranus), common edible seaweed in Japan, on immune responses and microbiota composition in zebrafish. We treated larvae and adult zebrafish with Okinawa mozuku (OM) fucoidan by immersion (100 and 500 µg/mL, 3 days) and by feeding (3 weeks), respectively. The effect of OM fucoidan on immune responses in zebrafish larvae was evaluated by live imaging of neutrophils and macrophages as well as quantitative polymerase chain reaction of pro-and anti-inflammatory cytokine genes. Whole microbiota of zebrafish larvae and intestinal microbiota of adult zebrafish treated with OM fucoidan were analyzed by Illumina MiSeq pair-end sequencing of the V3-V4 region of 16S rRNA genes. Fucoidan treatment only slightly affected the composition of the larvae microbiota and the number of neutrophils and macrophages, while pro-and anti-inflammatory cytokine gene expression levels were upregulated in the larvae treated with 500 µg/mL OM fucoidan. In contrast, feeding of OM fucoidan clearly altered the intestinal microbiota composition of adult zebrafish, which was characterized by the emergence and predominance of multiple bacterial operational taxonomic units (OTUs) affiliated with Rhizobiaceae and Comamonadaceae at the expense of E. coli-related Enterobacteriaceae, the dominant OTUs throughout the studied samples. These changes were accompanied by decreased expression levels of pro-inflammatory cytokine il1b in the intestines of the adult zebrafish. Our current study provides the first insights into in vivo modulatory effects of fucoidan on microbiota and immune responses of unchallenged zebrafish, which underscores the potential of fucoidan to play a modulatory role in the diet-microbiota-host interplay.
In recent years, researchers across various fields have shown a keen interest in the exploitation of biocompatible natural polymer materials, especially the development and application of seaweed polysaccharides. Seaweed polysaccharides are a multi-component mixture composed of one or more monosaccharides, which have the functions of being anti-virus, anti-tumor, anti-mutation, anti-radiation and enhancing immunity. These biological activities allow them to be applied in various controllable and sustained anti-inflammatory and anticancer drug delivery systems, such as seaweed polysaccharide-based nanoparticles, microspheres and gels, etc. This review summarizes the advantages of alginic acid, carrageenan and other seaweed polysaccharides, and focuses on their application in gel drug delivery systems (such as nanogels, microgels and hydrogels). In addition, recent literature reports and applications of seaweed polysaccharides are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.