Hyperactivation of sterol regulatory element binding protein 1c (SREBP-1c), which transcriptionally induces expression of enzymes responsible for de novo lipogenesis and triglyceride (TG) formation, is implicated in nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) pathogenesis. Posttranslational SREBP-1c maturation and activation is stimulated by the protein per-arnt-sim kinase (PASK). PASK-knockout mice are phenotypically normal on a conventional diet but exhibit decreased hypertriglyceridemia, insulin resistance, and hepatic steatosis on a highfat diet. We investigated the effects of pharmacologic PASK inhibition using BioE-1115, a selective and potent oral PASK inhibitor, in Zucker fatty (fa)/fa) rats, a genetic model of obesity, dyslipidemia, and insulin resistance, and in a dietary murine model of NAFLD/NASH. Female Zucker (fa/fa) rats and lean littermate (fa/+) controls received BioE-1115 (3-100 mg/kg/day) and/or omega-3 fatty acids, and blood glucose, hemoglobin A1c, glucose tolerance, insulin, and serum TG were measured. C57BL/6J mice fed a high-fat/high-fructose diet (HF-HFrD) were treated with BioE-1115 (100 mg/kg/day) or vehicle. Body weight and fasting glucose were measured regularly; serum TG, body and organ weights, and liver TG and histology were assessed at sacrifice. Messenger RNA (mRNA) abundance of SREBP-1c target genes was measured in both models. In Zucker rats, BioE-1115 treatment produced significant dosedependent reductions in blood glucose, insulin, and TG (all greater than omega-3 fatty acids) and dose dependently restored insulin sensitivity assessed by glucose tolerance testing. In HF-HFrD mice, BioE-1115 reduced body weight, liver weight, fasting blood glucose, serum TGs, hepatic TG, hepatic fibrosis, hepatocyte vacuolization, and bile duct hyperplasia. BioE-1115 reduced SREBP-1c target mRNA transcripts in both models. Conclusion: PASK inhibition mitigates many adverse metabolic consequences associated with an HF-HFrD and reduces hepatic fat content and fibrosis. This suggests that inhibition of PASK is an attractive therapeutic strategy for NAFLD/NASH treatment. (Hepatology Communications 2020;4:696-707).