K2P (KCNK) potassium channels
generate “leak”
potassium currents that strongly influence cellular excitability and
contribute to pain, somatosensation, anesthesia, and mood. Despite
their physiological importance, K2Ps lack specific pharmacology.
Addressing this issue has been complicated by the challenges that
the leak nature of K2P currents poses for electrophysiology-based
high-throughput screening strategies. Here, we present a yeast-based
high-throughput screening assay that avoids this problem. Using a
simple growth-based functional readout, we screened a library of 106,281
small molecules and identified two new inhibitors and three new activators
of the mammalian K2P channel K2P2.1 (KCNK2, TREK-1). By combining biophysical, structure–activity,
and mechanistic analysis, we developed a dihydroacridine analogue,
ML67-33, that acts as a low micromolar, selective activator of temperature-
and mechano-sensitive K2P channels. Biophysical studies
show that ML67-33 reversibly increases channel currents by activating
the extracellular selectivity filter-based C-type gate that forms
the core gating apparatus on which a variety of diverse modulatory
inputs converge. The new K2P modulators presented here,
together with the yeast-based assay, should enable both mechanistic
and physiological studies of K2P activity and facilitate
the discovery and development of other K2P small molecule
modulators.