Failure of element (s) in antenna arrays impair (s) symmetry and lead to unwanted distorted radiation pattern. The replacement of defective elements in aircraft antennas is a solution to the problem, but it remains a critical problem in space stations. In this paper, an antenna array diagnosis technique based on multivalued neural network (mNN) inverse modeling is proposed. Since inverse analytical input-to-output formulation is generally a challenging and important task in solving the inverse problem of array diagnosis, ANN is a compelling alternative, because it is trainable and learns from data in inverse modelling. The mNN technique proposed is an inverse modelling technique, which accommodates measurements for output model. This network takes radiation pattern samples with faults and matches it to the corresponding position or location of the faulty elements in that antenna array. In addition, we develop a new training error function, which focuses on the matching of each training sample by a value of our proposed inverse model, while the remaining values are free, and trained to match distorted radiation patterns. Thereby, mNN learns all training data by redirecting the faulty elements patterns into various values of the inverse model. Therefore, mNN is able to perform accurate array diagnosis in an automated and simpler manner.