Pigmented rice grains are important resources for health and nutritional perspectives. Thus, a thorough dissection of the variation of nutrients and bioactive metabolites in different colored rice is of global interest. This study applied LC–MS-based widely targeted metabolite profiling and unraveled the variability of metabolites and nutraceuticals in long grain/non-glutinous black (BR), red (RR), green (GR), and white rice (WR) grains. We identified and classified 1292 metabolites, including five flavonoid compounds specific to BR. The metabolite profiles of the four rice grains showed significant variation, with 275–543 differentially accumulated metabolites identified. Flavonoid (flavone, flavonol, and anthocyanin) and cofactor biosynthesis were the most differentially regulated pathways among the four rice types. Most bioactive flavonoids, anthocyanidins (glycosylated cyanidins and peonidins), phenolic acids, and lignans had the highest relative content in BR, followed by RR. Most alkaloids, amino acids and derivatives, lipids, and vitamins (B6, B3, B1, nicotinamide, and isonicotinic acid) had higher relative contents in GR than others. Procyanidins (B1, B2, and B3) had the highest relative content in RR. In addition, we identified 25 potential discriminatory biomarkers, including fagomine, which could be used to authenticate GR. Our results show that BR and RR are important materials for medicinal use, while GR is an excellent source of nutrients (amino acids and vitamins) and bioactive alkaloids. Moreover, they provide data resources for the science-based use of different colored rice varieties in diverse industries.