A sequence database was created for the Leishmania N-acetylglucosamine-1-phosphate transferase (nagt) gene from 193 independent isolates. PCR products of this single-copy gene were analyzed for restriction fragment length polymorphism based on seven nagt sequences initially available. We subsequently sequenced 77 samples and found 19 new variants (genotypes). Alignment of all 26 nagt sequences is gap free, except for a single codon addition or deletion. Phylogenetic analyses of the sequences allow grouping the isolates into three subgenera, each consisting of recognized species complexes, i.e., subgenus Leishmania (L. amazonensis-L. mexicana, L. donovani-L. infantum, L. tropica, L. major, and L. turanica-L. gerbilli), subgenus Viannia (L. braziliensis, L. panamensis), and one unclassified (L. enriettii) species. This hierarchy of grouping is also supported by sequence analyses of selected samples for additional single-copy genes present on different chromosomes. Intraspecies divergence of nagt varies considerably with different species complexes. Interestingly, species complexes with less subspecies divergence are more widely distributed than those that are more divergent. The relevance of this to Leishmania evolutionary adaptation is discussed. Heterozygosity of subspecies variants contributes to intraspecies diversity, which is prominent in L. tropica but not in L. donovani-L. infantum. This disparity is thought to result from the genetic recombination of the respective species at different times as a rare event during their predominantly clonal evolution. Phylogenetically useful sites of nagt are restricted largely to several extended hydrophilic loops predicted from hypothetical models of Leishmania NAGT as an endoplasmic reticulum transmembrane protein. In silico analyses of nagt from fungi and other protozoa further illustrate the potential value of this and, perhaps, other similar transmembrane molecules for phylogenetic analyses of single-cell eukaryotes.Many microorganisms speciate via clonal evolution. They replicate asexually, with genetic recombination as a rare event.A typical example among single-cell eukaryotes is the trypanosomatid protozoa (58, 59), which are mostly parasites, e.g., Leishmania spp. and Trypanosoma spp. Leishmania spp. live extracellularly in the digestive tracts of blood-sucking female sand flies of various species as their vectors and intracellularly in the macrophages of different mammalian hosts, i.e., human, canine, rodent, and other reservoir animals. The complexities of such unusual ecological niches undoubtedly contribute to Leishmania speciation.A large body of biological, biochemical, immunological, and molecular data (7,10,23,55) exists in the literature suggesting that the genus Leishmania consists of three groups (55) as follows: (i) subgenus Leishmania, which includes species complexes distributed in both the New World and the Old World, e.g., L. majorturanica-L. gerbilli; (ii) subgenus Viannia, whose members are restricted to the Neotropics, e.g., L. braziliensis [...