With the large-scale integration of renewable energy into off-grid DC systems, the stability issues caused by their fluctuations have become increasingly prominent. The dual active bridge (DAB) converter, as a DC-DC converter suitable for high power and high voltage level off-grid DC systems, plays a crucial role in maintaining and regulating grid stability through its control methods. However, the existing control methods for DAB are inadequate: linear control fails to meet dynamic response requirements, while nonlinear control relies on detailed model structures and parameters, making the control design complex and less accurate. To address this issue, this paper proposes a feedforward control strategy for a DC-DC converter in an off-grid hydrogen production system based on a linear extended state observer (LESO) and super-twisting sliding mode control (STSMC). Firstly, a reduced-order simplified model of the DAB was constructed through the structure of DAB. Then, based on the reduced-order simplified model, a feedforward control based on LESO and STSMC was designed, and its stability was analyzed. Finally, a simulation comparison of PI, LESO + terminal sliding mode control (TSMC), and LESO + STSMC control methods was conducted in a DC off-grid hydrogen production system. The results verified the proposed control method’s enhancement of the DAB’s rapid dynamic response capability and the system’s transient stability.