There has been a considerable importance for the islanding detection due to the growing integration of distributed generations (DGs) in the modern power grids. This paper proposes a novel active islanding detection scheme for synchronous DGs, considering two additional compensators and a positive feedback for each of active and reactive power control loops. The added blocks are designed using the small gain theorem and stability margins definition considering characteristics of open loop transfer functions of synchronous DG control loops. Islanding can be detected using the proposed method even where there is an exact match between generation and local load without sacrificing power quality. In addition, the performance of the proposed method can be retained even with high penetration of motor loads. The proposed scheme improves the stability and power quality of the grid, when the synchronous DG is subjected to the grid-connected disturbances. Furthermore, this method augments the stability margins of the system in the grid-connected conditions to enhance the disturbances ride-through capability of the system and reduce the negative impact of the active methods on the power quality. Simultaneous advantages of the proposed scheme are demonstrated by modeling a test system in MATLAB software and time-domain simulation achieved by PSCAD.