Ice‐free areas of maritime Antarctica (MA) are undergoing rapid environmental adjustment due to climate change because glaciers retreated. In recently deglaciated areas, sensitive indicators related to soil can be used as proxies of the transition phase from glacial to nonglacial conditions at paraglacial coastal systems. This work aims at comprehending how paraglacial coastal land systems respond to adjustment processes in highly dynamic deglaciated areas, based on net ecosystem exchange, soil temperature (ST), and soil moisture (SM) temporal series in two different vegetation communities on a paraglacial coastal land system in MA. We selected a moss community (MC) and a mixed community with mosses and lichens (MLC). MC is located on a hydromorphic area with buffered ST regime, compared with MLC, where greater SM variation range and freezing conditions were observed. MC and MLC are currently acting as an atmospheric CO2 sink. In this work, MC showed a greater capacity of CO2 uptake during measurements (711.20 g CO2 m−2). In this part of Antarctica, where a recent trend of decreasing ST occurs, less permafrost and surface land degradation, combined with enhanced carbon storage, are expected. However, in the long term, following the readjustment of the paraglacial period, thawing is expected, coupled with permafrost degradation and carbon release to the atmosphere, under the predicted warming scenario in MA.