As the most important multifunctional oxide material, lead zirconium titanate (PZT) has a diverse range of applications such as piezo actuators, ferroelectric nonvolatile memories, sensors, and transducers due to its excellent structural and electrical properties. However, it generally requires a high annealing temperature (above 600°C) to attain the desired properties, which hinders the integration of PZT with silicon-based Complementary Metal Oxide Semiconductor (CMOS). Therefore, the fabrication of PZT films by a chemical solution deposition (CSD) at temperatures compatible with Si-CMOS technology or even with polymeric substrate for flexible electronics would be of high technological interest. So far, different strategies to decrease the crystallization temperature of CSD-derived PZT films have been studied. This chapter presents a critical review on the low-temperature solution-processed PZT films and devices, and addresses challenges for fundamental understanding and practical integration of multifunctional PZT in devices. In the first part, recent advances in fabrication of CSD-derived PZT films at a low temperature are thoroughly reviewed. The second part discusses various techniques for patterning PZT into micro-nano-sized patterns. Lastly, some potential applications of the low-temperature CSD-derived PZT films and devices are demonstrated.