2021
DOI: 10.48550/arxiv.2108.07127
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Active Learning for Massively Parallel Translation of Constrained Text into Low Resource Languages

Abstract: We translate a closed text that is known in advance and available in many languages into a new and severely low resource language. Most human translation efforts adopt a portionbased approach to translate consecutive pages/chapters in order, which may not suit machine translation. We compare the portion-based approach that optimizes coherence of the text locally with the random sampling approach that increases coverage of the text globally. Our results show that the random sampling approach performs better. Wh… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 43 publications
0
0
0
Order By: Relevance