2023
DOI: 10.1007/978-3-031-37706-8_1
|View full text |Cite
|
Sign up to set email alerts
|

Active Learning of Deterministic Timed Automata with Myhill-Nerode Style Characterization

Abstract: We present an algorithm to learn a deterministic timed automaton (DTA) via membership and equivalence queries. Our algorithm is an extension of the L* algorithm with a Myhill-Nerode style characterization of recognizable timed languages, which is the class of timed languages recognizable by DTAs. We first characterize the recognizable timed languages with a Nerode-style congruence. Using it, we give an algorithm with a smart teacher answering symbolic membership queries in addition to membership and equivalenc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 26 publications
0
0
0
Order By: Relevance