Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
For the pattern recognition, most classification models are solved iteratively, except for Linear LDA, KLDA and ELM etc. In this paper, a nonlinear classification network model based on predefined evenly-distributed class centroids (PEDCC) is proposed. Its analytical solution can be obtained and has good interpretability. Using the characteristics of maximizing the inter-class distance of PEDCC and derivative weighted minimum mean square error loss function to minimize the intra-class distance, we can not only realize the effective nonlinearity of the network, but also obtain the analytical solution of the network weight. Then, the sample is classified based on GDA. In order to further improve the performance of classification, PCA is used to reduces the dimensionality of the original sample, meanwhile, the CReLU activation function are adopted to enhances the expression ability of the features. The network transforms the samples into the higher dimensional feature space through the weighted minimum mean square error, so as to find a better separation hyperplane. In experiments, the feasibility of the network structure is verified from pure linear đť‘ľ, đť‘ľ+Tanh, and PCA+đť‘ľ+Tanh respectively on many small data sets and large data sets, and compared with SVM and ELM in terms of training speed and recognition rate. The results show that, in general, this model has advantages on small data set both in recognition accuracy and training speed, while it has advantages in training speed on large data sets. Finally, by introducing a multi-stage network structure based on the latent feature norm, the classifier network can further significantly improve the classification performance, the recognition rate of small data sets is effectively improved and much higher than that of existing methods, while the recognition rate of large data sets is similar to that of SVM.
For the pattern recognition, most classification models are solved iteratively, except for Linear LDA, KLDA and ELM etc. In this paper, a nonlinear classification network model based on predefined evenly-distributed class centroids (PEDCC) is proposed. Its analytical solution can be obtained and has good interpretability. Using the characteristics of maximizing the inter-class distance of PEDCC and derivative weighted minimum mean square error loss function to minimize the intra-class distance, we can not only realize the effective nonlinearity of the network, but also obtain the analytical solution of the network weight. Then, the sample is classified based on GDA. In order to further improve the performance of classification, PCA is used to reduces the dimensionality of the original sample, meanwhile, the CReLU activation function are adopted to enhances the expression ability of the features. The network transforms the samples into the higher dimensional feature space through the weighted minimum mean square error, so as to find a better separation hyperplane. In experiments, the feasibility of the network structure is verified from pure linear đť‘ľ, đť‘ľ+Tanh, and PCA+đť‘ľ+Tanh respectively on many small data sets and large data sets, and compared with SVM and ELM in terms of training speed and recognition rate. The results show that, in general, this model has advantages on small data set both in recognition accuracy and training speed, while it has advantages in training speed on large data sets. Finally, by introducing a multi-stage network structure based on the latent feature norm, the classifier network can further significantly improve the classification performance, the recognition rate of small data sets is effectively improved and much higher than that of existing methods, while the recognition rate of large data sets is similar to that of SVM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.