This paper proposes a general method combining evolutionary algorithm and decision-making technique to optimize the structure of a minichannel heat sink (MCHS). Two conflicting objectives, the thermal resistance θ and the pumping power P, are simultaneously considered to assess the performance of the MCHS. In order to achieve the ultimate optimal design, multi-objective genetic algorithm is employed to obtain the nondominated solutions (Pareto solutions), while technique for order preference by similarity to an ideal solution (TOPSIS) is employed to determine which is the best compromise solution. Meanwhile, both the material cost and volumetric flow rate are fixed where this nonlinear problem is solved by applying the penalty function. The results show that θ of Pareto solutions varies from 0.03707 K W−1 to 0.10742 K W−1, while P varies from 0.00307 W to 0.05388 W, respectively. After the TOPSIS selection, it is found that P is significantly reduced without increasing too much θ. As a result, θ and P of the optimal MCHS determined by TOPSIS are 35.82% and 52.55% lower than initial one, respectively.