Abstract:With the advancement of the Long-Term Evolution (LTE) network and smart-phones, most of today's internet content is delivered via cellular links. Due to the nature of wireless signal propagation, the capacity of the last hop link can vary within a short period of time. Unfortunately, Transmission Control Protocol (TCP) does not perform well in such scenarios, potentially leading to poor Quality of Service (QoS) (e.g., end-to-end throughput and delay) for the end user. In this work, we have studied the effect of Active Queue Management (AQM) based congestion control and intra LTE handover on the performance of different Medium Access Control (MAC) schedulers with TCP traffic by ns3 simulation. A proper AQM design in the Radio Link Control (RLC) buffer of eNB in the LTE network leads to the avoidance of forced drops and link under-utilization along with robustness to a variety of network traffic-loads. We first demonstrate that the original Random Early Detection (RED) linear dropping function cannot cope well with different traffic-load scenarios. Then, we establish a heuristic approach in which different non-linear functions are proposed with one parameter free to define. In our simulations, we demonstrate that the performance of different schedulers can be enhanced via proper dropping function.