Oct-1, a member of the POU family of transcription factors, is expressed at relatively high levels in ectodermal and mesodermal cell lineages during early Xenopus embryogenesis . Here we show that overexpression of Oct-1 induces programmed cell death concomitant with the loss of the posterior part of the body axis. Truncated Oct-1 variants, missing either the C-terminal or N-terminal transactivation domain, exhibit a different capacity to cause such developmental defects. Oct-1-induced cell death is rescued in unilaterally injected embryos by non-injected cells, indicative of the non-cell autonomous character of the developmental effects of Oct-1. This was confirmed by marker gene analysis, which showed a significant decrease in brachyury expression, suggesting that Oct-1 interferes with an FGF-type signalling pathway.