Thermostability is
the key to maintain the structural integrity
and catalytic activity of enzymes in industrial biotechnological processes,
such as terpene cyclase-mediated generation of medicines, chiral synthons,
and fine chemicals. However, affording a large increase in the thermostability
of enzymes through site-directed protein engineering techniques can
constitute a challenge. In this paper, we used ancestral sequence
reconstruction to create a hyperstable variant of the
ent
-copalyl diphosphate synthase PtmT2, a terpene cyclase involved in
the assembly of antibiotics. Molecular dynamics simulations on the
μs timescale were performed to shed light on possible molecular
mechanisms contributing to activity at an elevated temperature and
the large 40 °C increase in melting temperature observed for
an ancestral variant of PtmT2.
In silico
analysis
revealed key differences in the flexibility of a loop capping the
active site, between extant and ancestral proteins. For the modern
enzyme, the loop collapses into the active site at elevated temperatures,
thus preventing biocatalysis, whereas the loop remains in a productive
conformation both at ambient and high temperatures in the ancestral
variant. Restoring a Pro loop residue introduced in the ancestral
variant to the corresponding Gly observed in the extant protein led
to reduced catalytic activity at high temperatures, with only moderate
effects on the melting temperature, supporting the importance of the
flexibility of the capping loop in thermoadaptation. Conversely, the
inverse Gly to Pro loop mutation in the modern enzyme resulted in
a 3-fold increase in the catalytic rate. Despite an overall decrease
in maximal activity of ancestor compared to wild type, its increased
thermostability provides a robust backbone amenable for further enzyme
engineering. Our work cements the importance of loops in enzyme catalysis
and provides a molecular mechanism contributing to thermoadaptation
in an ancestral enzyme.