This paper is concerned with the dynamic stability and response of an inclined Euler–Bernoulli beam under a moving mass and a moving follower force. The extended Hamilton’s principle is used to derive the governing equation of motion and the boundary conditions for this general moving load/force problem. Considering a simply supported beam, one can solve the problem analytically by approximating the spatial part of the deflection with a Fourier sine series. Based on the formulation and method of solution, sample dynamic responses are determined for a beam that is inclined at 30[Formula: see text] with respect to the horizontal. It is shown that the dynamic response of the beam under a moving mass is rather different from an equivalent moving follower force. Also investigated herein are the dynamic stability of inclined beams under moving load/follower force which are described by four key variables, viz. the speed of the moving mass/follower force, concentrated mass to the beam distributed mass, vibration frequency and the magnitude of the moving mass/follower force. The critical axial load and the critical follower force are different when they are located at different positions in the beam; except for the special case when they are at the end of the beam.