neurosecretory vesicles undergo docking and priming before Ca 2 + -dependent fusion with the plasma membrane. Although de novo synthesis of phosphatidylinositol(4,5)bisphosphate (PtdIns(4,5)P 2 ) is required for exocytosis, its precise contribution is still unclear. Here we show that inhibition of the p110δ isoform of PI3-kinase by IC87114 promotes a transient increase in PtdIns(4,5)P 2 , leading to a potentiation of exocytosis in chromaffin cells. We then exploit this pathway to examine the effect of a transient PtdIns(4,5)P 2 increase on neurosecretory vesicles behaviour, outside the context of a secretagogue stimulation. our results demonstrate that a rise in PtdIns(4,5)P 2 is sufficient to promote the mobilization and recruitment of secretory vesicles to the plasma membrane via Cdc42-mediated actin reorganization. PtdIns(4,5)P 2, therefore, orchestrates the actin-based conveyance of secretory vesicles to the plasma membrane.