Abstract:Oligodendrocytes are dependent on an intact, dynamic microtubule (MT) network, which participates in the elaboration and stabilization of myelin forming extensions, and is essential for cellular sorting processes. The microtubule-associated protein tau is constituent of oligodendrocytes. During culture maturation it is developmentally regulated and important for MT stability, MT formation and intracellular trafficking. Downregulation of tau impairs process outgrowth and the transport of myelin basic protein (MBP) mRNA to the cell periphery. Cells fail to differentiate into MBP-expressing, sheet-forming oligodendrocytes. Tau-positive inclusions originating in oligodendrocytes and white matter pathology are prominent in frontotemporal dementias, such as Pick's disease, progressive supranuclear palsy and corticobasal degeneration. An impairment or overload of the proteolytic degradation systems, i.e. the ubiquitin proteasomal system and the lysosomal degradation pathway, has been connected to the formation of protein aggregates. Large protein aggregates are excluded from the proteasome and degraded by autophagy, which is a highly selective process and requires receptor proteins for ubiquitinated proteins, including histone deacetylase 6 (HDAC6). HDAC6 is present in oligodendrocytes, and α-tubulin and tau are substrates of HDAC6. In this review our current knowledge of the role of tau and protein aggregate formation in oligodendrocyte cell culture systems is summarized.