We have developed a new T-DNA vector, pGA2715, which can be used for promoter trapping and activation tagging of rice (Oryza sativa) genes. The binary vector contains the promoterless -glucuronidase (GUS) reporter gene next to the right border. In addition, the multimerized transcriptional enhancers from the cauliflower mosaic virus 35S promoter are located next to the left border. A total of 13,450 T-DNA insertional lines have been generated using pGA2715. Histochemical GUS assays have revealed that the GUS-staining frequency from those lines is about twice as high as that from lines transformed with the binary vector pGA2707, which lacks the enhancer element. This result suggests that the enhancer sequence present in the T-DNA improves the GUS-tagging efficiency. Reverse transcriptase-PCR analysis of a subset of randomly selected pGA2715 lines shows that expression of the genes immediately adjacent to the inserted enhancer is increased significantly. Therefore, the large population of T-DNA-tagged lines transformed with pGA2715 could be used to screen for promoter activity using the gus reporter, as well as for creating gain-of-function mutants.Recent completion of the draft sequence for the rice (Oryza sativa) genome has resulted in an explosion of information on rice genes (Goff et al., 2002; Yu et al., 2002). The challenge for the post-sequencing era is to identify the biological functions for these genes. Of all the approaches used to discover gene function, the most direct is to disrupt the genes and analyze the consequences. Various methods have been developed in plants for this purpose. These include using ethyl methanesulfonate, fast-neutron treatment, or insertion of an element, such as a transposable element or T-DNA (Koornneef et al., 1982;Sundaresan, 1996;Krysan et al., 1999). Insertional mutagenesis has the advantage that the inserted element acts as a tag for gene identification. However, all gene disruption approaches also have some limitations. For example, it is difficult to identify the function of redundant genes, or of genes required in early embryogenesis or gametophyte development.To overcome those limitations, modified insertional elements have been developed. One of these modified designs is the gene trap system that involves creating fusions between the tagged genes and a reporter gene, such as -glucuronidase (gus) or green fluorescent protein (gfp; Sundaresan et al., 1995;Springer, 2000). This system provides a way of identifying novel genes based on their expression patterns. Insertion of the promoterless reporter not only destroys normal gene function but also activates expression of the reporter gene. Because expression levels can be monitored in heterozygote plants, the gene trap system is useful for studying the patterns of most plant genes, including essential genes that cause lethal mutations. This system is convenient for observing mutant phenotypes because reporter activation indicates the location, condition, and time of expression for the disrupted gene. In Arabidopsis, ...