The density functional theory (DFT) calculations are carried out to study the mechanism details and the ensemble effect of methanol dehydrogenation over Pt(3) and PtAu(2) clusters, which present the smallest models of pure Pt clusters and bimetallic PtAu clusters. The energy diagrams are drawn out along both the initial O-H and C-H bond scission pathways via the four sequential dehydrogenation processes, respectively, i.e., CH(3)OH → CH(2)OH → CH(2)O → CHO → CO and CH(3)OH → CH(3)O → CH(2)O → CHO → CO, respectively. It is revealed that the reaction kinetics over PtAu(2) is significantly different from that over Pt(3). For the Pt(3)-mediated reaction, the C-H bond scission pathway, where an ensemble composed of two Pt atoms is required to complete methanol dehydrogenation, is energetically more favorable than the O-H bond scission pathway, and the maximum barrier along this pathway is calculated to be 12.99 kcal mol(-1). In contrast, PtAu(2) cluster facilitates the reaction starting from the O-H bond scission, where the Pt atom acts as the active center throughout each elementary step of methanol dehydrogenation, and the initial O-H bond scission with a barrier of 21.42 kcal mol(-1) is the bottom-neck step of methanol decomposition. Importantly, it is shown that the complete dehydrogenation product of methanol, CO, can more easily dissociate from PtAu(2) cluster than from Pt(3) cluster. The calculated results over the model clusters provide assistance to some extent for understanding the improved catalytic activity of bimetal PtAu catalysts toward methanol oxidation in comparison with pure Pt catalysts.