Amyloid fibrils are rigid β-pleated protein aggregates that are connected with series of harmful diseases and at the same time are promising as base for novel nanomaterials. Thus, design of compounds able to inhibit or redirect those aggregates formation is important both for the biomedical aims and for nanotechnology applications. Here, we studied the effect of tetraphenylporphyrins (metal free, their Cu and Pd complexes, and those functionalized by carboxy and amino groups on periphery) on insulin amyloid self-assembling. The strongest impact on insulin aggregation was demonstrated by a metal-free porphyrin bearing four carboxy groups. This compound strongly suppresses insulin aggregation (about 88% reduction in amyloid-sensitive probe emission) inducing formation of fibrils with the length close to this of free insulin (1.7 ± 0.6 μm as compared with 1.4 ± 0.4 μm, respectively) with an essentially reduced tendency to lateral aggregation. Contrarily, the presence of tetraphenylporphyrin containing four amino groups only slightly affects fibrils' morphology and makes weaker impact on insulin aggregation yield (about 44% reduction). This is explained by the ability of aromatic carboxy groups of 5,10,15,20-(tetra-4carboxyphenyl)porphyrin to interact with complementary protein-binding groups and thus stabilize the supramolecular complex. For 5,10,15,20-(tetra-4aminophenyl)porphyrin, full protonation takes place in acidic medium of protein aggregation reaction; this results in the high positive charge of TPPN4 (equal or close to +6) and hence higher contribution of coulombic repulsion to interaction of TPPN4 with insulin. One more possible mechanism of the lower inhibition effect of TPPN4 as compared with TPPC4 could be the more restricted possibility of the former as compared with the latter to form H bonds with insulin groups. It was also shown that metal-free, Pd-containing, and Cu-containing tetraphenylporphyrins without peripheral substituents make almost the same impact on the protein self-assembling. We suppose this to be due to coordination saturation of these metal atoms.