A combinatorial library containing 645 different compositions was synthesised and characterised for methanol tolerant oxygen electro‐reduction reaction (ORR) catalytic performance. The library was composed of compositions involving between 1 and 4 metals among Pt, Ru, Fe, Mo and Se. In an optical screening test, Pt(50)Ru(10)Fe(20)Se(10) composition exhibited the highest ORR activity in the presence of methanol. This composition was further investigated by synthesis and characterisation of a powder version catalyst [Pt(50)Ru(10)Fe(20)Se(10)/C]. At 0.85 V [vs. reversible hydrogen electrode (RHE)] in the absence of methanol, the Pt/C catalyst exhibited higher ORR current (0.0990 mA) than the Pt(50)Ru(10)Fe(20)Se(10)/C catalyst (0.0902 mA). But much higher specific activity (12.7 μA cmpt–2) was observed in the Pt(50)Ru(10)Fe(20)Se(10)/C catalyst than for the Pt/C catalyst 6.51 μA cmpt–2). In the presence of methanol, the ORR current decreased by 0.0343 and 0.247 mA for the Pt(50)Ru(10)Fe(20)Se(10)/C and Pt/C catalysts, respectively, which proved the excellent methanol tolerance of the Pt(50)Ru(10)Fe(20)Se(10)/C catalyst.