This study investigates the differential expression of lactate dehydrogenase (LDH) isoenzymes in the genus Channa using PAGE. With the help of obligate air-breathing, all of the selected species can sustain water deprivation to varying degrees. In subunit composition and higher electrophoretic mobility of LDH-A4, the profiles of channid species were similar to other teleosts documented in the literature. However, inter-and intra-species differences, with particular reference to aerobic/anaerobic metabolic options, existed. Whereas glycolysis in Channa punctata appears to depend largely on aerobic LDH-B and partly on anaerobic LDH-A, metabolism in C. gachua, C. striata and C. marulius depends exclusively on the activity of anaerobic LDH-A. Expression of the third locus Ldh-C was recorded in the eyes of C. marulius, in addition to C. gachua. Heat inactivation experiments reveal species differences between LDH isoenzymes and a general order of the relative stabilities: LDH-C > LDH-B > LDH-A. Metabolic and evolutionary implications of the findings have also been discussed.