2022
DOI: 10.48550/arxiv.2201.08985
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Actor-Critic-Based Learning for Zero-touch Joint Resource and Energy Control in Network Slicing

Abstract: To harness the full potential of beyond 5G (B5G) communication systems, zero-touch network slicing (NS) is viewed as a promising fully-automated management and orchestration (MANO) system. This paper proposes a novel knowledge plane (KP)-based MANO framework that accommodates and exploits recent NS technologies and is termed KB5G. Specifically, we deliberate on algorithmic innovation and artificial intelligence (AI) in KB5G. We invoke a continuous model-free deep reinforcement learning (DRL) method to minimize… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 12 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?