Airborne opto-electronic platforms are very important in unmanned aerial vehicle systems. The stability and tracking performance of airborne opto-electronic platforms are easily affected by disturbance factors, making compensating for those disturbances a very prominent issue. In this paper, compared to the traditional disturbance observer, an improved velocity signal based disturbance observer (IVDOB) is particularly designed to compensate for the disturbance. Then its capability, robustness, and stability are discussed. For improving the stabilization accuracy and tracking performance of airborne opto-electronic platforms, the universal approximation property of fuzzy systems is used to compensate the disturbance further and an adaptive fuzzy control system based on IVDOBs is proposed. To validate the scheme, a series of experiments were carried out. The results show that the proposed control scheme can achieve reliable control precision and satisfy the requirements of airborne opto-electronic platform tasks.