Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Introduction The time required to reach clinical remission varies in patients with chronic urticaria (CU). The objective of this study is to develop a predictive model using a machine learning methodology to predict time to clinical remission for patients with CU. Methods Adults with ≥ 2 ICD-9/10 relevant CU diagnosis codes/CU-related treatment > 6 weeks apart were identified in the Optum deidentified electronic health record dataset (January 2007 to June 2019). Clinical remission was defined as ≥ 12 months without CU diagnosis/CU-related treatment. A random survival forest was used to predict time from diagnosis to clinical remission for each patient based on clinical and demographic features available at diagnosis. Model performance was assessed using concordance, which indicates the degree of agreement between observed and predicted time to remission. To characterize clinically relevant groups, features were summarized among cohorts that were defined based on quartiles of predicted time to remission. Results Among 112,443 patients, 73.5% reached clinical remission, with a median of 336 days from diagnosis. From 1876 initial features, 176 were retained in the final model, which predicted a median of 318 days to remission. The model showed good performance with a concordance of 0.62. Patients with predicted longer time to remission tended to be older with delayed CU diagnosis, and have more comorbidities, more laboratory tests, higher body mass index, and polypharmacy during the 12-month period before the first CU diagnosis. Conclusions Applying machine learning to real-world data enabled accurate prediction of time to clinical remission and identified multiple relevant demographic and clinical variables with predictive value. Ongoing work aims to further validate and integrate these findings into clinical applications for CU management. Supplementary Information The online version contains supplementary material available at 10.1007/s13555-022-00827-6.
Introduction The time required to reach clinical remission varies in patients with chronic urticaria (CU). The objective of this study is to develop a predictive model using a machine learning methodology to predict time to clinical remission for patients with CU. Methods Adults with ≥ 2 ICD-9/10 relevant CU diagnosis codes/CU-related treatment > 6 weeks apart were identified in the Optum deidentified electronic health record dataset (January 2007 to June 2019). Clinical remission was defined as ≥ 12 months without CU diagnosis/CU-related treatment. A random survival forest was used to predict time from diagnosis to clinical remission for each patient based on clinical and demographic features available at diagnosis. Model performance was assessed using concordance, which indicates the degree of agreement between observed and predicted time to remission. To characterize clinically relevant groups, features were summarized among cohorts that were defined based on quartiles of predicted time to remission. Results Among 112,443 patients, 73.5% reached clinical remission, with a median of 336 days from diagnosis. From 1876 initial features, 176 were retained in the final model, which predicted a median of 318 days to remission. The model showed good performance with a concordance of 0.62. Patients with predicted longer time to remission tended to be older with delayed CU diagnosis, and have more comorbidities, more laboratory tests, higher body mass index, and polypharmacy during the 12-month period before the first CU diagnosis. Conclusions Applying machine learning to real-world data enabled accurate prediction of time to clinical remission and identified multiple relevant demographic and clinical variables with predictive value. Ongoing work aims to further validate and integrate these findings into clinical applications for CU management. Supplementary Information The online version contains supplementary material available at 10.1007/s13555-022-00827-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.