The safety of chemicals, drugs, novel foods and genetically modified crops is often tested using repeat-dose sub-acute toxicity tests in rats or mice. It is important to avoid misinterpretations of the results as these tests are used to help determine safe exposure levels in humans. Treated and control groups are compared for a range of haematological, biochemical and other biomarkers which may indicate tissue damage or other adverse effects. However, the statistical analysis and presentation of such data poses problems due to the large number of statistical tests which are involved. Often, it is not clear whether a “statistically significant” effect is real or a false positive (type I error) due to sampling variation. The author's conclusions appear to be reached somewhat subjectively by the pattern of statistical significances, discounting those which they judge to be type I errors and ignoring any biomarker where the p-value is greater than p = 0.05. However, by using standardised effect sizes (SESs) a range of graphical methods and an over-all assessment of the mean absolute response can be made. The approach is an extension, not a replacement of existing methods. It is intended to assist toxicologists and regulators in the interpretation of the results. Here, the SES analysis has been applied to data from nine published sub-acute toxicity tests in order to compare the findings with those of the author's. Line plots, box plots and bar plots show the pattern of response. Dose-response relationships are easily seen. A “bootstrap” test compares the mean absolute differences across dose groups. In four out of seven papers where the no observed adverse effect level (NOAEL) was estimated by the authors, it was set too high according to the bootstrap test, suggesting that possible toxicity is under-estimated.