Recently, it was reported that acute hypervolemia improves arterial oxygen tension in human athletes known to experience exercise-induced arterial hypoxemia. Since exercise-induced arterial hypoxemia is routinely observed in racehorses and is known to limit performance, we examined whether pre-exercise induction of acute hypervolemia would similarly benefit arterial oxygenation in maximally exercising thoroughbred horses. Two sets of experiments, namely, placebo [intravenous (IV) physiological saline] and acute hypervolemia (IV 7.2% NaCl, causing an 18.2% expansion of plasma volume) studies were carried out in random order on 13 healthy, exercise-trained thoroughbred horses, 7 days apart. An incremental exercise protocol leading to 120 s of galloping at 14 m s(-1) on a 3.5% uphill incline was used. Galloping at this workload elicited maximal heart rate and induced pulmonary hemorrhage in all horses in both treatments. In the placebo study, arterial oxygen tension decreased to 76.1 (2) mmHg (P<0.0001) at 30 s of maximal exertion, but further significant changes did not occur as exercise duration increased to 120 s [arterial oxygen tension 72.4 (2) mmHg]. A significant arterial hypoxemia also developed in galloping horses in the acute hypervolemia study [arterial oxygen tension at 30 and 120 s was 76.7 (1.7) and 71.9 (1.6) mmHg, respectively], but significant differences between treatments could not be demonstrated. In both treatments, a similar desaturation of arterial hemoglobin was also observed at 30 s of maximal exercise, which intensified with increasing exercise duration as hyperthermia, acidosis and hypercapnia intensified. Thus, acute expansion of plasma volume did not benefit arterial oxygenation in maximally exercising thoroughbred horses.