The study was aimed to ascertain whether continuation or change in the offspring of the diet consumed by the parents modulates, in later life, the previously programmed bone metabolism. We used adult Wistar rats (16 males; 32 females), divided into groups that were fed either a standard (diet S) or a high‐energy (diet F). After 90 days of obesity induction, the rats were submitted to obtain female offspring from parents S and F. The offspring stayed with their mothers until 21 days of age (weaning day). Our previous studies have proved the programming effects of parental obesity on the skeletal system of their offspring at the age of 21 days. Weaned female offspring were divided into groups: S/S‐parents and offspring fed the S diet; S/F‐parents fed the S diet and offspring fed the F diet; F/S‐parents fed the diet F and offspring with the diet S; F/F‐parents and offspring fed the F diet (F/F). After sacrifice, isolated femurs were assessed by peripheral quantitative computed tomography and by a three‐point bending test. The bones were examined at 49 and 90 days of life. We found that nutritional programming has a significant influence on the development and metabolism of the skeletal system in females during growth and maturity. Moreover, the modification of nutrition alters the metabolism of bone tissue, and the osteotropic effects vary depending on the nature of the change, as well as the stage of development. Reducing the caloric content of the diet inhibits the mineralization and decreases the mechanical strength of the bones while increasing the caloric content of the diet has a beneficial osteotropic effect.