PurposeFew studies examined the relationship between temperature fluctuation metrics and acute myocardial infarction (AMI) hospitalizations within a single cohort. We aimed to expand knowledge on two basic measures: temperature range and difference.MethodsWe conducted a time-series analysis on the correlations between temperature range (TR), daily mean temperature differences (DTDmean), and daily mean-maximum/minimum temperature differences (TDmax/min) and AMI hospitalizations, using data between 2013 and 2016 in Beijing, China. The effects of TRn and DTDmeann over n-day intervals were compared, respectively. Subgroup analysis by age and sex was performed.ResultsA total of 81,029 AMI hospitalizations were included. TR1, TDmax, and TDmin were associated with AMI in J-shaped patterns. DTDmean1 was related to AMI in a U-shaped pattern. These correlations weakened for TR and DTDmean with longer exposure intervals. Extremely low (1st percentile) and high (5°C) DTDmean1 generated cumulative relative risk (CRR) of 2.73 (95% CI: 1.56–4.79) and 2.15 (95% CI: 1.54–3.01). Extremely high TR1, TDmax, and TDmin (99th percentile) correlated with CRR of 2.00 (95% CI: 1.73–2.85), 1.71 (95% CI: 1.40–2.09), and 2.73 (95% CI: 2.04–3.66), respectively. Those aged 20–64 had higher risks with large TR1, TDmax, and TDmin, while older individuals were more affected by negative DTDmean1. DTDmean1 was associated with a higher AMI risk in females.ConclusionTemperature fluctuations were linked to increased AMI hospitalizations, with low-temperature extremes having a more pronounced effect. Females and the older adult were more susceptible to daily mean temperature variations, while younger individuals were more affected by larger temperature ranges.