BackgroundMeghalaya, one of eight states in the northeastern region of India, has been reported to carry a high malaria burden. However, malaria surveillance, epidemiology, and vector studies are sparse, and no reviews combining these topics with malaria prevention and control strategies have been published in recent years. Furthermore, no analysis of surveillance data has been published documenting the changes in epidemiology following the first distribution of long-lasting insecticidal nets (LLINs) statewide in 2016.MethodsA hybrid approach was used to describe the status of malaria in Meghalaya. First, a literature search was performed using the terms ‘malaria’ and ‘Meghalaya’. Second, data were obtained from the Meghalaya State Malaria Control Programme for 2006–2017 for analysis of trends. Data from 3 years 2015–2017 were analysed further by district and year to assess changes in malaria incidence and distribution following the introduction of LLINs.Results/conclusionsLike malaria in mainland India, malaria in Meghalaya is complex, with both Plasmodium falciparum and Plasmodium vivax parasites in circulation, multiple Anopheles vector species, and reports of both unusual and severe malaria syndromes across all age groups. Integrated statewide malaria epidemiology, vector, and prevention and control data for Meghalaya are not readily available, and published studies are largely focused on a single topic or a single district or region of the state. Although malaria prevention and control approaches are available, (e.g. spraying, LLINs, personal repellents), their use and effectiveness is also not well characterized in the literature. Analysis of state malaria control programme data indicates that case incidence and related fatalities in Meghalaya have declined over the last decade. This could be attributed to changes in treatment guidelines and/or statewide distribution of effective prevention methods such as LLINs. Since the distribution of more than 900,000 LLINs in 2016, the malaria caseload has declined significantly in most Meghalaya districts, excluding the remote and geographically isolated South Garo Hills. Additionally, the proportion of adult malaria cases (15+ years of age versus children 0–14 years) in most districts was significantly greater following LLIN distribution, which likely reflects common lifestyle practices in these areas (e.g. adults working during night hours; small children in the households receiving priority for bed net protection). While reduction in malaria case incidence and related deaths is clear, the changes in malaria transmission and clinical manifestation have not been characterized. Routine epidemiology and vector surveillance combined with real-time data reporting are essential for the continued reduction and eventual elimination of malaria in Meghalaya.