Fatty acids have a crucial role in providing energy and performing essential functions in living organisms. Moreover, these substances exhibit the most significant alterations in their structure based on ecotoxicological parameters when viewed from a biochemical perspective. These bioactive chemicals are present in the cellular architecture. The study of these fatty acids, crucial for maintaining the integrity and permeability of cell membranes, holds great significance for all living organisms. Consequently, doing fatty acid analysis specifically at the phospholipid level holds significant importance.
The impact of lambda cyhalothrin on the fatty acid content of several phospholipid subclasses (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS) in the gill tissue of O. niloticus (Perciformes: Cichlidae) was assessed using gas chromatography. The alterations in the fatty acid composition was analyzed 21 days after exposure.
Following the complete extraction of lipids from gill tissue, the tissue was subsequently separated into different subclasses of phospholipids using thin layer chromatography. The samples were subjected to methylation and then evaluated using Gas Chromatography to determine the percentage of the fatty acid. After doing the analysis, a grand total of 16 fatty acids were identified. The research revealed that the primary fatty acids were 16:0 and 18:0 of saturated fatty acids, monounsaturated 18:1n-9, and polyunsaturated 18:2n-6, 20:4n-6, and 22:6n-6. Upon analyzing the distribution of fatty acids, it was observed that PC, PE, and PI included 16:0, PE contained 18:1, PE and PS contained C18:2n-6 and 20:4n-6, and significant alterations in C22:6n-3 were detected in PE. Our investigation revealed that the n-3/n-6 ratio of fish in the PE subclass was the lowest when compared to PC, PI, and PS.