AdaBoost Classification for Predicting Residential Habitation Status in Mount Merapi Post-Eruption Rehabilitation
NURHADI WIJAYA,
MOHAMMAD DIQI,
IKHWAN MUSTIADI
Abstract:This research paper explores the use of the AdaBoost algorithm for predicting residential habitation status in the aftermath of the Mount Merapi eruption. Using a dataset from the Rehabilitation and Reconstruction Task Force, with 2516 instances and 11 attributes, the AdaBoost model was trained and evaluated. The model demonstrated a robust performance with an accuracy of 92%, though it struggled with correctly identifying all 'No Habited' instances. These findings underscore the potential of machine learning … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.