2021 Smart Technologies, Communication and Robotics (STCR) 2021
DOI: 10.1109/stcr51658.2021.9588906
|View full text |Cite
|
Sign up to set email alerts
|

AdaBoost for Parkinson's Disease Detection using Robust Scaler and SFS from Acoustic Features

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(8 citation statements)
references
References 15 publications
0
3
0
Order By: Relevance
“…The data after dimensionality reduction were subsequently used as input for the ensemble learning algorithm, facilitating the training process, and ultimately leading to the construction of the final predictive model for anticancer peptides. It is worth mentioning that the RobustScaler ( Reddy et al, 2021 ) method is a robust approach for scaling numerical features, providing reliable and accurate results across various machine learning tasks. Additionally, the PCA algorithm was also employed to reduce dimensionality while preserving valuable information in the feature vectors.…”
Section: Methodsmentioning
confidence: 99%
“…The data after dimensionality reduction were subsequently used as input for the ensemble learning algorithm, facilitating the training process, and ultimately leading to the construction of the final predictive model for anticancer peptides. It is worth mentioning that the RobustScaler ( Reddy et al, 2021 ) method is a robust approach for scaling numerical features, providing reliable and accurate results across various machine learning tasks. Additionally, the PCA algorithm was also employed to reduce dimensionality while preserving valuable information in the feature vectors.…”
Section: Methodsmentioning
confidence: 99%
“…Robust scaler merupakan salah satu metode feature scaling yang digunakan dalam analisis data. Metode ini bertujuan untuk mengubah skala fitur-fitur dalam dataset agar lebih tahan terhadap outlier atau nilai ekstrem [11] . Outlier dapat mempengaruhi perhitungan statistik seperti rata-rata dan simpangan baku, dan dapat memiliki dampak yang signifikan pada hasil analisis data [12] .…”
Section: Pendahuluanunclassified
“…Hasil Eksperimen memperlihatkan bahwa model prediksi klasifikasi algoritma K-Nearest Neighbors menggunakan metode scaling robust scaler memperlihatkan rata-rata nilai lebih baik dibandingkan dengan tanpa robust scaler dengan nilai accuracy sebesar 0.82, precision sebesar 0.87, recall sebesar 0.80 dan F1 score sebesar 0.83. Penelitian yang dilakukan [13] terhadap penyakit parkinson, penelitiannya berfokus pada standarisasi data yang diberikan dan pemilihan fitur sekuensial untuk menganalisis karakteristik yang dipilih. Penelitiannya menggunakan algoritma klasifikasi Random Forest, Logistic Regression, SVM, Gaussian Naive Bayes, dan KNN.…”
Section: Pendahuluanunclassified
“…learning pipeline in order to enhance the performance of the ML algorithms. As a dataset usually contains various different features and each one can have a different range of values or units of measure, RS was used to scale up the dataset inputs [50]. RS transforms the feature vector: each value is subtracted from the feature median and is then divided by the interquartile range (IQR), which is the difference between the 75th percentile and 25th percentile using the formula:…”
Section: ) Data Preprocessingmentioning
confidence: 99%