Angiotensin II (AngII)-activated epidermal growth factor receptor (EGFR) has been implicated in abdominal aortic aneurysm (AAA) development. In vascular smooth muscle cells (VSMC), AngII activates EGFR via a metalloproteinase, a disintegrin and metallopeptidase domain 17 (ADAM17). We hypothesized that AngII-dependent AAA development would be prevented in mice lacking ADAM17 in VSMCs. To test this concept, control and VSMC ADAM17 deficient mice were co-treated with AngII and a lysyl oxidase inhibitor, β-aminopropionitrile, to induce AAA. We found that 52.4% of control mice did not survive due to aortic rupture. All other surviving control mice developed AAA and demonstrated enhanced expression of ADAM17 in the AAA lesions. In contrast, all AngII and β-aminopropionitrile-treated VSMC ADAM17 deficient mice survived and showed reduction in external/internal diameters (51%/28%, respectively). VSMC ADAM17 deficiency was associated with lack of EGFR activation, interleukin-6 induction, ER/oxidative stress and matrix deposition in the abdominal aorta of treated mice. However, both VSMC ADAM17 deficient and control mice treated with AngII and β-aminopropionitrile developed comparable levels of hypertension. Treatment of C57Bl/6 mice with an ADAM17 inhibitory antibody but not with control IgG also prevented AAA development. In conclusion, VSMC ADAM17 silencing or systemic ADAM17 inhibition appears to protect mice from AAA formation. The mechanism appears to involve suppression of EGFR activation.