The aim of this paper is to find the existence of solutions for the following Kirchhoff type biharmonic system with exponential nonlinearity and singular weights
\(\begin{cases}m\left(\|u\|^2+\|v\|^2\right) \Delta^2 u=\left[I_\mu * \frac{F(x, u, v)}{|x|^\alpha}\right] \frac{f_1(x, u, v)}{|x|^\alpha} & \text { in } \Omega \\ m\left(\|u\|^2+\|v\|^2\right) \Delta^2 v=\left[I_\mu * \frac{F(x, u, v)}{|x|^\alpha}\right] \frac{f_2(x, u, v)}{|x|^\alpha} & \text { in } \Omega \\ u=0, \quad v=0, \quad \nabla u=\mathbf{0}, \quad \nabla v=\mathbf{0} & \text { on } \partial \Omega\end{cases}S\)
where \(\Omega\) is a bounded domain in \(\mathbb{R}^4\) containing the origin with smooth boundary, \(\mu \in(0,4), 0<\alpha<\frac{\mu}{2}\), \(I_\mu(x)=\frac{1}{|x|^4-\mu}, m\) is a Kirchhoff type function, \(\|u\|^2=\int_{\Omega}|\Delta u|^2 d x, f_i\) behaves like \(e^{\beta_{0 s^2}}\) when \(|s| \rightarrow \infty\) for some \(\beta_0>0\), and there is \(C^1\) function \(F: \mathbb{R}^2 \rightarrow \mathbb{R}\) such that \(\left(\frac{\partial F(x, u, v)}{\partial u}, \frac{\partial F(x, u, v)}{\partial v}\right)=\left(f_1(x, u, v), f_2(x, u, v)\right)\). We establish sufficient conditions for the solutions of the above system by using variational methods with Adams inequality.