The epidermal growth
factor receptor (EGFR) is a dimeric membrane
protein that regulates key aspects of cellular function. Activation
of the EGFR is linked to changes in the conformation of the transmembrane
(TM) domain, brought about by changes in interactions of the TM helices
of the membrane lipid bilayer. Using an advanced computational approach
that combines Coarse-Grained molecular dynamics and well-tempered
MetaDynamics (CG-MetaD), we characterize the large-scale motions
of the TM helices, simulating multiple association and dissociation
events between the helices in membrane, thus leading to a free energy
landscape of the dimerization process. The lowest energy state of
the TM domain is a right-handed dimer structure in which the TM helices
interact through the N-terminal small-X3-small sequence
motif. In addition to this state, which is thought to correspond to
the active form of the receptor, we have identified further low-energy
states that allow us to integrate with a high level of detail a range
of previous experimental observations. These conformations may lead
to the active state via two possible activation pathways, which involve
pivoting and rotational motions of the helices, respectively. Molecular
dynamics also reveals correlation between the conformational changes
of the TM domains and of the intracellular juxtamembrane domains,
paving the way for a comprehensive understanding of EGFR signaling
at the cell membrane.