2016
DOI: 10.1155/2016/3973467
|View full text |Cite
|
Sign up to set email alerts
|

Adaptation Algorithm of Geometric Graphs for Robot Motion Planning in Dynamic Environments

Abstract: This study proposes an adaptive graph algorithm for collision-free motion planning of articulated robots in dynamic environments. For this purpose, deformations of the configuration space were analyzed according to the changes of the workspace using various simulations. Subsequently, we adopted the principles of gas motion dynamics in our adaptation algorithm to address the issue of the deformation of the configuration space. The proposed algorithm has an adaptation mechanism based on expansive repulsion and s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2019
2019

Publication Types

Select...
1
1

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 41 publications
(40 reference statements)
0
1
0
Order By: Relevance
“…This paper proposes an algorithm to optimize the roadmap graph that can cover arbitrary morphologies of the free configuration space to maximize coverage. Our previous study [23] considered an adaptation algorithm for geometric graphs in an intuitive manner. However, in this study, we reanalyze that adaptive graph algorithm and present its results in terms of the maximization of graph coverage.…”
Section: Introductionmentioning
confidence: 99%
“…This paper proposes an algorithm to optimize the roadmap graph that can cover arbitrary morphologies of the free configuration space to maximize coverage. Our previous study [23] considered an adaptation algorithm for geometric graphs in an intuitive manner. However, in this study, we reanalyze that adaptive graph algorithm and present its results in terms of the maximization of graph coverage.…”
Section: Introductionmentioning
confidence: 99%