Retroviruses acquire a lipid envelope during budding from the membrane of their hosts. Therefore, the composition of this envelope can provide important information about the budding process and its location. Here, we present mass spectrometry analysis of the lipid content of human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). The results of this comprehensive survey found that the overall lipid content of these viruses mostly matched that of the plasma membrane, which was considerably different from the total lipid content of the cells. However, several lipids are enriched in comparison to the composition of the plasma membrane: (i) cholesterol, ceramide, and GM3; and (ii) phosphoinositides, phosphorylated derivatives of phosphatidylinositol. Interestingly, microvesicles, which are similar in size to viruses and are also released from the cell periphery, lack phosphoinositides, suggesting a different budding mechanism/ location for these particles than for retroviruses. One phosphoinositide, phosphatidylinositol 4,5-bisphosphate [PI(4,5)P 2 ], has been implicated in membrane binding by HIV Gag. Consistent with this observation, we found that PI(4,5)P 2 was enriched in HIV-1 and that depleting this molecule in cells reduced HIV-1 budding. Analysis of mutant virions mapped the enrichment of PI(4,5)P 2 to the matrix domain of HIV Gag. Overall, these results suggest that HIV-1 and other retroviruses bud from cholesterol-rich regions of the plasma membrane and exploit matrix/PI(4,5)P 2 interactions for particle release from cells.Retroviruses rely on their host for many essential parts of the viral replication cycle. Biochemical and antibody-based analyses of the replication cycle and proteins found in the virions have revealed many details of the molecular interactions between human immunodeficiency virus (HIV) and its host (20). In contrast, the role of lipids has been less well studied. With the increasing recognition that lipids play an important role in cellular signaling, it is no coincidence that lipid factors are slowly gaining prominence in our understanding of retroviral replication.Retroviruses, including HIV and murine leukemia virus (MLV), acquire their lipid coats by budding through host plasma membranes. Two important issues arise when considering the roles of lipids in retrovirus assembly and budding. First, the idea that HIV and other retroviruses bud from lipid rafts has gained widespread acceptance (39, 45). Lipid rafts are liquid ordered domains that exist within the liquid disordered phase of the bulk cell membrane. These dynamic lipid-protein assemblies are characterized by high levels of cholesterol, sphingolipids, saturated glycerophospholipids, and raft proteins. Because the half-lives for lipid rafts are extremely short (50), the assignment of HIV to lipid rafts is commonly established through the colocalization of HIV proteins with putative raft proteins and the preponderance of raft lipids, including cholesterol, sphingomyelin (SM), dihydrosphingomyelin (dhSM), ce...