(1) Background: Previous studies have indicated that ferulic acid esterase (FAE), cellulase and xylanase have synergistic effects in lignocellulose degradation, and the cutting stage has a major impact on silages. Whether these additives affect the silages at different cutting stages is unclear. (2) Methods: Sudangrass height at the tested cutting stages was 1.8 m (S1) and 2.0 m (S2). The silage from the two cutting stages was treated with FAE-producing Lactobacillus plantarum (LP), cellulase and xylanase (CX) and a combination of LP and CX (LP+CX) for 30 and 60 days. (3) Results: Compared with CK, adding LP+CX significantly decreased the pH and the content of neutral detergent fiber (NDF) and acidic detergent fiber (ADF) (p < 0.05) and increased the lactic acid (LA) concentration (p < 0.05), dry matter (DM) content and crude protein content. Adding LP+CX effectively degraded lignocellulose in sudangrass, and the NDF and ADF degradation rates at the two stages were all more than 30%. In comparison, cutting at the S2 stage led to a lower pH and higher LA and DM contents (p < 0.05). Additives and the cutting stage exerted a strong effect on the silage microbial community, and Firmicutes and Lactiplantibacillus became the most dominant bacterial phyla and genera, especially at the S2 stage. (4) Conclusions: The results suggest that FAE-producing L. plantarum, cellulase and xylanase had synergistic effects on sudangrass silages, especially at the S2 stage, and their use can thus serve as an efficient method for ensiling.