Defects in apoptosis have been implicated in chemoresistance of colon cancer cells. We report here the ability to resist to 5-fluorouracil-induced apoptosis of 8 colon cancer cell lines differing in p53 and bax status: p53 ؊/0 bax ؉/؉ for TC7, SW480, HT-29; p53 ؉/؉ bax ؊/؊ for LS174T, LoVo; p53 ؉/؉ bax ؉/؊ for HCT116; p53 ؉/؉ or p53 ؉/0 bax ؉/؉ for LS513 or HCT-EB, respectively. To approximate to the in vivo therapy, the cell lines were exposed to a long-term treatment of 5-FU. The analysis of proteins implicated in the apoptotic pathway has shown that the independent analysis of p53 or bax status was not sufficient to predict the extent of drug-resistance of all cell lines. In p53 ؉/؉ cell lines but not in p53 ؊/0 cell lines, a low level of the pro-apoptotic Bax protein was correlated with a greater resistance of cells to 5-FU. In addition, we found that high levels of anti-apoptotic Bcl-2 and Bcl-x L proteins combined with a low level of Bax were correlated to high 5-FU resistance of wild-type p53 cell lines. The same correlation was obtained for 2 out of 3 mutated p53 cell lines. In conclusion, the relative levels of Bcl-2, Bcl-x L and Bax may altogether contribute to determine the resistance of a majority of colon tumor cells to long-term 5-FU treatment, whatever their p53 status.