The most important technology driver in the electronics industry is miniaturization mainly driven by size reduction on wafer level and cost. One of the interconnection technologies for fine pitch applications with the potential for highest integration and cost savings is Flip Chip technology. The commonly used method of generating fine pitch solder bumps is by electroplating the solder. This process is difficult to control or even impossible if it comes to ternary or quaternary alloys. The work described in this study addresses the limitations of existing bumping technologies by enabling low-cost, fine pitch bumping and the use of a very large variety of solder alloys. This flexibility in the selection of the solder materials and UBM stacks is a large advantage if it is essential to improve temperature cycling resistance, drop test resistance, or to increase electromigration lifetime. The technology allows rapid changeover between different low melting solder alloys. Tighter bump pitches and a better bump quality (no flux entrapment) are achievable than with screen printing of solder paste. Because no solder material is wasted, the material costs for precious metal alloys like Au80Sn20 are much lower than with other bumping processes. Solder bumps with a diameter between to date 30 μm and 500 μm as well as small and large batches can be manufactured with one cost efficient process.
To explore this potential, cost-efficient solder bumping and automated assembly technologies for the processing of Flip Chips have been developed and qualified. Flip Chips used in this study are 10 mm by 10 mm in size, have a pitch of 100 μm and a solder ball diameter of 30 μm, 40 μm or 50μm, respectively.
Wafer level solder application has been done using wafer level solder sphere transfer process or solder sphere jetting technology, respectively. The latter tool has been used for many years in the wafer level packaging industry for both Flip Chip and chip scale packaging applications. It is commonly known in the industry as a solder ball bumping equipment. For the described work the process was scaled down for processing solder spheres with a diameter of 30 μm what was never done before that way worldwide.
The research has shown that the underfill process is one of the most crucial factors when it comes to Flip Chip miniaturization for high reliability applications. Therefore, high performance underfill material was qualified initially [1].
Final long term reliability testing has been done according to MIL-STD883G, method 1010.8, condition B up to thirteen thousand cycles with excellent performance of the highly miniaturized solder joints. SEM/EDX and other analysis techniques will be presented. Additionally, an analysis of the failure mechanism will be given and recommendations for key applications and further miniaturization will be outlined.