Current electrically heated fabrics provide heat in cold climates, suffer from abundant wasted radiant heat energy to the external environment, and are prone to damage by water. Thus, constructing energy-efficient and superhydrophobic conductive fabrics is in high demand. Therefore, we propose an effective and facile methodology to prepare a superhydrophobic, highly conductive, and trilayered fabric with a connected carbon nanotube (CNT) layer and a titanium dioxide (TiO 2 ) nanoparticle heat-reflecting layer. We construct polyamide/fluorinated polyurethane (PA/FPU) nanofibrous membranes via first electrospinning, then performing blade-coating with the polyurethane (PU) solution with CNTs, and finally fabricating FPU/TiO 2 nanoparticles via electrospraying. This strategy causes CNTs to be connected to form a conductive layer and enables TiO 2 nanoparticles to be bound together to form a porous, heat-reflecting layer. As a consequence, the as-prepared membranes demonstrate high conductivity with an electrical conductivity of 63 S/m, exhibit rapid electric-heating capacity, and exhibit energy-efficient asymmetrical heating behavior, i.e., the heating temperature of the PA/FPU nanofibrous layer reaches more than 83 °C within 90 s at 24 V, while the heating temperature of the FPU/TiO 2 layer only reaches 53 °C, as well as prominent superhydrophobicity with a water contact angle of 156°, indicating promising utility for the next generation of electrical heating textiles.