Next generation sequencing technologies have enabled sequencing many genomes. Because of the overall increasing demand and the inherent parallelism available in many required analyses, these bioinformatics applications should ideally run on clusters, clouds and/or grids. We present a modified annotation framework that achieves a speed-up of 45x using 50 workers using a Caenorhabditis japonica test case. We also evaluate these modifications within the Amazon EC2 cloud framework. The underlying genome annotation (MAKER) is parallelised as an MPI application. Our framework enables it to now run without MPI while utilising a wide variety of distributed computing resources. This parallel framework also allows easy explicit data transfer, which helps overcome a major limitation of bioinformatics tools that often rely on shared file systems. Combined, our proposed framework can be used, even during early stages of development, to easily run sequence analysis tools on clusters, grids and clouds.