Users of hearing-assistive devices often struggle to locate and segregate sounds, which can make listening in schools, cafes, and busy workplaces extremely challenging. A recent study in unilaterally implanted CI users showed that sound-localisation was improved when the audio received by behindthe-ear devices was converted to haptic stimulation on each wrist. We built on this work, using a new signal-processing approach to improve localisation accuracy and increase generalisability to a wide range of stimuli. We aimed to: (1) improve haptic sound-localisation accuracy using a varied stimulus set and (2) assess whether accuracy improved with prolonged training. Thirty-two adults with normal touch perception were randomly assigned to an experimental or control group. The experimental group completed a 5-h training regime and the control group were not trained. Without training, haptic sound-localisation was substantially better than in previous work on haptic sound-localisation. It was also markedly better than sound-localisation by either unilaterally or bilaterally implanted CI users. After training, accuracy improved, becoming better than for sound-localisation by bilateral hearing-aid users. These findings suggest that a wrist-worn haptic device could be effective for improving spatial hearing for a range of hearing-impaired listeners. Users of hearing-assistive devices, such as hearing aids and cochlear implants, often struggle to locate and segregate sounds 1-4. As well as impairing threat detection, this makes listening in complex acoustic environmentssuch as, schools, cafes, and busy workplaces-highly challenging. Cochlear implants (CIs) enable severely-toprofoundly deaf individuals to perceive sound by electrically stimulating the auditory nerve. Recently, it has been shown that this electrical stimulation can be augmented by providing missing sound information through haptic stimulation ("electro-haptic stimulation") 5-11. Historically, a small number of studies in young normal-hearing listeners have explored the possibility of using haptic stimulation on the fingertips to locate sounds 12-15 , but research in this area is extremely sparse. In a recent study by Fletcher et al., it was shown that sound-localisation can be substantially improved in CI users by augmenting the CI signal with haptic stimulation on the wrists 10. This haptic stimulation was derived from audio signals that would be received by behind-the-ear hearing aids or CIs. Localisation accuracy increased after 30 min of training, with the same speech-sample used for both testing and training. In this study, we developed a new signal-processing strategy for haptic sound-localisation, which incorporated linked multi-band compression and wrist sensitivity correction. This was intended to improve haptic sound-localisation accuracy and increase the generalisability of the approach to a wide range of stimuli. The first aim of this study was to assess localisation accuracy with this new signal-processing strategy. To ensure that results were gen...