Active robotic filtering is probably the solution for beating heart Totally Endoscopic Coronary Artery Bypass Grafting (TECABG). In this work, we assess the heart motion dynamics by simultaneous use of high-speed imaging of optical markers attached to the heart, ECG signals and ventilator airflow acquisitions. Our goal is to assess the heart motions (shape, velocity, acceleration) in order to be able to make more accurate specifications for a novel, dedicated robot that could follow these motions in real time. Furthermore, using two additional inputs (ECG and airflow), we propose a novel robust prediction algorithm that could be used with a predictive control algorithm to improve the tracking accuracy.